
Lagrange Coded Computing: Optimal Design for
Resiliency, Security, and Privacy

Qian Yu∗, Songze Li∗, Netanel Raviv†, Seyed Mohammad Mousavi Kalan∗,
Mahdi Soltanolkotabi∗, and A. Salman Avestimehr∗

∗ Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
† Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA

Abstract

We consider a scenario involving computations over a massive dataset stored dis-
tributedly across multiple workers, which is at the core of distributed learning
algorithms. We propose Lagrange Coded Computing (LCC), a new framework
to simultaneously provide (1) resiliency against stragglers that may prolong com-
putations; (2) security against Byzantine (or malicious) workers that deliberately
modify the computation for their benefit; and (3) (information-theoretic) privacy
of the dataset amidst possible collusion of workers. LCC, which leverages the
well-known Lagrange polynomial to create computation redundancy in a novel
coded form across workers, can be applied to any computation scenario in which
the function of interest is an arbitrary multivariate polynomial of the input dataset,
hence covering many computations of interest in machine learning. LCC signifi-
cantly generalizes prior works to go beyond linear computations. It also enables
secure and private computing in distributed settings, improving the computation
and communication efficiency of the state-of-the-art. Furthermore, we prove the op-
timality of LCC by showing that it achieves the optimal tradeoff between resiliency,
security, and privacy. Finally, we show via experiments on Amazon EC2 that LCC
speeds up the conventional uncoded implementation of distributed least-squares
linear regression by up to 13.43×, and also achieves a 2.36×-12.65× speedup over
the state-of-the-art straggler mitigation strategies.

1 Introduction

The massive size of modern datasets necessitates computational tasks to be performed distributedly,
where data is dispersed among many servers operating in parallel [1]. As we “scale out” computations
across many servers, several fundamental challenges arise. Cheap commodity hardware tends to
vary greatly in computation time, and it has been demonstrated [2–4] that a small fraction of servers,
referred to as stragglers, can be 5 to 8 times slower than average, creating significant delays in
computations. Also, as we distribute computations across many servers, massive amounts data must
be moved between them to execute the computational tasks, often over many iterations of a running
algorithm, and this creates a substantial bandwidth bottleneck [5]. Distributed computing systems are
also much more susceptible to adversarial servers, making security and privacy a major concern [6–8].

We consider a general scenario where computation is carried out distributively across several workers,
and propose Lagrange Coded Computing (LCC), a new framework to simultaneously provide
1. resiliency against straggler workers that may prolong computations;
2. security against Byzantine (or malicious, adversarial) workers, with no computational restriction,

that deliberately send erroneous data in order to affect the computation for their benefit; and
3. (information-theoretic) privacy of the dataset amidst possible collusion of workers.
LCC can be applied to any computation scenario where the function of interest is an arbitrary
multivariate polynomial of the input dataset. This covers many computations of interest in machine

Workshop on Systems for ML and Open Source Software at NeurIPS 2018, Montréal, Canada.



learning, such as various gradient and loss-function computations and tensor algebraic operations
(e.g., low-rank tensor approximation). The key idea of LCC is to encode the input using Lagrange
polynomials, to create computational redundancy in a novel coded form across workers. This
redundancy can then be exploited to provide resiliency, security, and privacy.

Worker 1

Worker 2

Worker #$
Worker #%

Worker &'

Worker &(

Worker )

dataset
*', … , *-

. possibly 
malicious nodes / possibly colluding nodes 

Coding of
the dataset

0*1
0*'

0*$

Master

Worker #'

. . . . . .

0*23

0*45

. . . . . .

6( 0*')

6( 0*$)

6( 0*1)

Worker 9'

Worker 9:

. . .

0*;<

= stragglers *?

?23

?25

Figure 1: An overview of the problem considered in
this paper, where the goal is to evaluate a not necessarily
linear function f on a given dataset X = (X1, . . . , XK)
using N workers. Each worker applies f on a possibly
coded version of inputs (denoted by X̃i’s). By carefully
designing the coding strategy, the master can decode
all the required results from a subset of workers, in the
presence of stragglers (workers s1, ..., sS) and Byzan-
tine workers (workers m1, ...,mA), while keeping the
dataset private to colluding workers (workers c1, ..., cT ).

Specifically, as illustrated in Fig. 1, using
a master-worker distributed computing archi-
tecture with N workers, the goal is to com-
pute f(Xi) for every Xi in a large dataset
X = (X1, X2, . . . , XK), where f is a given
polynomial with degree deg f . To do so, N
coded versions of the input dataset, denoted by
X̃1, X̃2, . . . , X̃N are created, and the workers
then compute f over the coded data, as if no cod-
ing is taking place. For a given N and f , we say
that the tuple (S,A, T ) is achievable if there ex-
ists an encoding and decoding scheme that can
complete the computations in the presence of
up to S stragglers, up to A adversarial workers,
whilst keeping the dataset private against sets of
up to T colluding workers.

Our main result is that by carefully encoding the
dataset the proposed LCC achieves (S,A, T )
if (K + T − 1) deg f + S + 2A + 1 ≤ N .
The significance of this result is that by one
additional worker (i.e., increasing N by 1) LCC
can increase the resiliency to stragglers by 1 or
increase the robustness to malicious servers by
1/2, while maintaining the privacy constraint.
Hence, this result essentially extends the well-
known optimal scaling of error-correcting codes (i.e., adding one parity can provide robustness
against one erasure or 1/2 error in optimal maximum distance separable codes) to the distributed
secure computing paradigm.

We prove the optimality of LCC by showing that it achieves the optimal tradeoff between resiliency,
security, and privacy. This further extends the scaling law in coding theory, showing that similar to
the resiliency and security requirement, it is fundamental that any additional worker increases data
privacy against colluding workers by 1/ deg f .

Finally, we specialize our theoretical guarantees of LCC in context of least-squares linear regression,
an elemental learning task, and demonstrate its performance gain by optimally suppressing stragglers.
Leveraging the algebraic structure of gradient computation, several strategies have been developed
recently to exploit data and gradient coding for straggler mitigation in the training process (e.g. [9–13]).
We implement LCC for regression on Amazon EC2 clusters, and empirically compare its performance
with conventional uncoded approaches and two state-of-the-art straggler mitigation schemes: gradient
coding (GC) [10, 14–16] and matrix-vector multiplication (MVM) based approaches [9, 11]. Our
experiment shows that compared with the uncoded scheme, GC scheme, and MVM scheme, LCC
improves the run-time by 6.79×-13.43×, 2.36×-4.29×, and 1.01×-12.65×, respectively.

Related works. There has recently been a surge of interest on using coding theoretic approaches to
alleviate key bottlenecks (e.g., stragglers, bandwidth, and security) in distributed machine learning
applications (e.g., [10, 14, 15, 17–25]). The proposed LCC scheme significantly advances prior works
in this area by 1) generalizing coded computing to arbitrary multivariate polynomial computations,
which are of particular importance in learning applications; 2) extending the application of coded
computing to secure and private computing; 3) reducing the computation/communication load in
distributed computing (and distributed learning) by factors that scale with the problem size, without
compromising security and privacy guarantees; and 4) enabling 2.36×-12.65× speedup over the
state-of-the-art in distributed least-squares linear regression in cloud networks.

Secure/private multiparty computing (MPC) and machine learning (e.g., [26, 27]) are also extensively
studied topics that address a problem setting similar to LCC. As we elaborate in Section 3, com-

2



pared with conventional methods (e.g., the celebrated BGW scheme for MPC [26]), LCC achieves
substantial reduction in the amount of randomness, storage overhead, and computation complexity.

2 Problem Formulation and Examples
We consider the problem of evaluating a multivariate polynomial f : V → U over a dataset X =
(X1, . . . , XK), where V and U are vector spaces over a field F. The goal is to compute Y1 ,
f(X1), . . . , YK , f(XK), in a distributed computing environment with a master and N workers
(Figure 1). We define the degree of f , denoted by deg f , as the total degree of the polynomial.1

In this setting each worker has already stored a fraction of the dataset prior to computation, in
a possibly coded manner. Specifically, for i ∈ [N ] (where [N ] , {1, . . . , N}), worker i stores
X̃i , gi(X1, . . . , XK), where gi is a (possibly random) function, refered to as the encoding function
of that worker. We restrict our attention to linear encoding schemes (see [28] for a formal definition) ,
which guarantee low encoding complexity and simple implementation.

Each worker i computes Ỹi , f(X̃i) and returns it to the master. The master waits for a subset of
fastest workers and decodes Y1, . . . , YK . The procedure must satisfy several additional requirements:
• Resiliency, i.e., robustness against stragglers. Formally, the master must be able to obtain the

correct values of Y1, . . . , YK even if up to S workers fail to respond (or respond after the master
executes the decoding algorithm), where S is the resiliency parameter. A scheme that guarantees
resiliency against S stragglers is called S-resilient.

• Security, i.e., robustness against adversaries. That is, the master must be able to obtain correct
values of Y1, . . . , YK even if up to A workers return arbitrarily erroneous results, where A is the
security parameter. A scheme that guarantees security against A adversaries is called A-secure.

• Privacy, i.e., the workers must remain oblivious to the content of the dataset, even if up to T of
them collude, where T is the privacy parameter. Formally, for every T ⊆ [N ] of size at most T ,
we must have I(X; X̃T ) = 0, where I is mutual information, X̃T represents the collection of
the encoded dataset stored at the workers in T , and X is seen as chosen uniformly at random. A
scheme which guarantees privacy against T colluding workers is called T -private. 2

More concretely, given any subset of workers that return the computing results (denoted by K),
the master computes (Ŷ1, ..., ŶK) = hK({Ỹi}i∈K), where each hK is a deterministic function (or
is random but independent of both the encoding functions and input data). We refer to the hK’s
as decoding functions.3 We say that a scheme is S-resilient, A-secure, and T -private if the master
always returns the correct results (i.e., each Yi = Ŷi), and all above requirements are satisfied.

Given this framework, we aim to characterize the region for (S,A, T ), such that an S-resilient,
A-secure, and T -private scheme can be found, given N , K, and function f , for any sufficiently large
field F. This framework encapsulates many computations of interest, including linear computation
[9, 12, 29, 30], bilinear computation [31], general tensor algebra [32], and gradient computation [33].

3 Main Results and Prior Works
We now state our main results and discuss their connections with prior works. Our first theorem
characterizes the region for (S,A, T ) that LCC achieves (i.e., the set of all feasible S-resilient,
A-secure, and T -private schemes via LCC as defined in the previos section).

Theorem 1. Given a number of workersN and a datasetX = (X1, . . . , XK), Lagrange Coded Com-
puting (LCC) provides an S-resilient, A-secure, and T -private scheme for computing {f(Xi)}Ki=1
for any polynomial f , as long as

(K + T − 1) deg f + S + 2A+ 1 ≤ N. (1)

1We focus on the non-trivial case where K > 0 and f is not constant. The total degree of a polynomial f is
the maximum among all the total degrees of its monomials. When discussing finite F, we resort to the canonical
representation of polynomials, in which the individual degree within each term is no more than (|F| − 1).

2Equivalently, it requires that X̃T and X are independent. Under this condition, the input data X still appears
uniformly random after the colluding workers learn X̃T , which guarantees the privacy. To guarantee that the
privacy requirement is well defined, we assume that F and V are finite whenever T > 0.

3Similar to encoding, we also require the decoding function to have low complexity. When there is no
adversary (A = 0), we restrict our attention to linear decoding schemes.

3



Remark 1. To prove Theorem 1, we formally present LCC in Section 4, which achieves the stated
resiliency, security, and privacy. The key idea is to encode the input dataset using the Lagrange
polynomial. In particular, encoding functions (i.e., gi’s) in LCC amount to evaluations of a Lagrange
polynomial of degree K − 1 at N distinct points. Hence, computations at the workers amount to
evaluations of a composition of that polynomial with the desired function f . Therefore, inequality (1)
may simply be seen as the number of evaluations that are necessary and sufficient in order to
interpolate the composed polynomial, which is later evaluated at a certain point to finalize the
computation. LCC also has a number of additional properties of interest. First, the proposed encoding
is identical for all computations f , which allows pre-encoding of the data without knowing the
identity of the computing task (i.e., universality). Second, decoding and encoding rely on polynomial
interpolation and evaluation, and hence efficient off-the-shelf subroutines can be used.
Remark 2. Note that LHS of inequality (1) is independent of the number of workers N , hence the
key property of LCC is that adding 1 worker can increase its resilience to stragglers by 1 or its
security to malicious servers by 1/2, while keeping the privacy constraint T the same. Note that
using an uncoded replication based approach, to increase the resiliency to stragglers by 1, one needs
to essentially repeat each computation once more (i.e., requiring K more machines as opposed to 1
machine in LCC). This result essentially extends the well-known optimal scaling of error-correcting
codes (i.e., adding one parity can provide robustness against one erasure or 1/2 error in optimal
maximum distance separable codes) to the distributed computing paradigm.

Our next theorem demonstrates the optimality of LCC. 4

Theorem 2. Lagrange Coded Computing (LCC) achieves the optimal trade-off between resiliency,
security, and privacy for any multilinear function f among all computing schemes that uses linear
encoding, for all problem scenarios. Moreover, when focusing on the case where no security constraint
is imposed, LCC, which uses linear decoding functions, is optimal for any polynomial f among all
schemes with this additional decoding constrain, when the characteristic of F is sufficiently large.

Remark 3. Theorem 2 is formally stated and proved in the long version [28]. The main proof idea is
to show that any computing strategy that outperforms LCC (or its uncoded version) would violate
the decodability requirement, by finding two instances of the computation process where the same
intermediate computing results correspond to different output values.
Remark 4. LCC improves and generalizes previously works on coded computing in a few aspects:
Generality–LCC significantly generalizes prior works to go beyond linear and bilinear computations
that have so far been the main focus in this area, and can be applied to arbitrary multivariate
polynomial computations that arise in machine learning applications. Universality–once the data
has been coded, any polynomial up to a certain degree can be computed distributedly via LCC. In
other words, data encoding of LCC can be universally used for any polynomial computation. This is
in stark contrast to previous task specific coding techniques in the literature. Furthermore, workers
apply the same computation as if no coding took place; a feature that reduces computational costs,
and prevents ordinary servers from carrying the burden of outliers. Security and Privacy–other than a
handful of works discussed above, straggler mitigation (i.e., resiliency) has been the primary focus of
the coded computing literature. This work extends the application of coded computing to secure and
private computing for general polynomial computations.
Remark 5. To illustrate the significant role of LCC in secure and private computing, we consider the
celebrated BGW scheme [26]. 5 As we elaborate below, in comparison with the BGW scheme, LCC
results in a factor of K reduction in the amount of randomness, storage overhead, and computation
complexity, while requiring more workers to guarantee the same level of privacy (see Table 1). 6

A key distinction between the two is that BGW uses Shamir’s scheme [34] to secret-share the entire
dataset, while LCC instead uses Lagrange polynomials for encoding. LCC operates on 1

K fraction of
the input dataset as a unit, resulting in a significant reduction (factor of K) in storage and randomness.

4Here LCC refers to the better between the achievability scheme for Theorem 1 and its uncoded version, for
details, see [28].

5Conventionally, the BGW scheme operates in multiple rounds, requiring significantly more communication
overhead than one-shot schemes. For simplicity of comparison, we present a modified one-shot version of BGW.

6A BGW scheme was also proposed in [26] for secure MPC, however for a substantially different setting.
Similarly, a comparison can be made by adapting it to our setting, leading to similar results, omitted for brevity.

4



BGW LCC
Complexity per worker K 1
Frac. data per worker 1 1/K
Randomness KT T
Min. num. of workers deg(f)(T + 1) deg(f)(K + T − 1) + 1

Table 1: Comparison between BGW based designs and LCC. The com-
putational complexity is normalized by that of evaluating f ; random-
ness, which refers to the number of random entries used in encoding
functions, is normalized by the length of Xi.

The BGW scheme will then
evaluate f over all stored
coded data at the nodes. In
LCC, however, each worker
` only needs to store one
encoded X̃` and compute
f(X̃`). This leads to the
second key advantage of
LCC, which is a factor of
K reduction in computation
complexity at each worker.

In BGW, after computation each worker ` has essentially evaluated a polynomial of degree at
most deg(f) · T . With no straggler or adversary, the master can recover all required results through
polynomial interpolation, as long as N ≥ deg(f) · T + 1 workers participated7. Under the same
condition, LCC requires deg(f) · (K + T − 1) + 1 workers, larger than that of the BGW scheme.

4 Lagrange Coded Computing
In this Section we prove Theorem 1 by presenting LCC and characterizing the region for (S,A, T )
that it achieves. We start with an example to illustrate the key components of LCC.

4.1 Illustrating Example
Consider the function f(Xi) = X2

i , where Xi’s are some square matrices. We demonstrate LCC in
the scenario where the input data X is partitioned into K = 2 batches X1 and X2, and the computing
system has N = 8 workers. Assume that F = F11. We aim to achieve (S,A, T ) = (1, 1, 1).

The gist of LCC is picking a uniformly random matrix Z, and encoding (X1, X2, Z) using a Lagrange
interpolation polynomial: u(z) , X1 · (z−2)(z−3)(1−2)(1−3) +X2 · (z−1)(z−3)(2−1)(2−3) + Z · (z−1)(z−2)(3−1)(3−2) . We then fix
distinct {αi}8i=1 in F such that {αi}8i=1 ∩ [2] = ∅, and let workers 1, . . . , 8 store u(α1), . . . , u(α8).

First, note that for every j ∈ [8], worker j sees X̃j , a linear combination of X1 and X2 that is masked
by addition of λ · Z for some nonzero λ ∈ F11; since Z is uniformly random, this guarantees perfect
privacy for T = 1. Next, note that worker j computes f(X̃j) = f(u(αj)), which is an evaluation of
the composition polynomial f(u(z)), whose degree is at most 4, at αj .

Normally, a polynomial of degree 4 can be interpolated from 5 evaluations at distinct points. However,
the presence of A = 1 adversary and S = 1 straggler requires the master to employ a Reed-Solomon
decoder, and have three additional evaluations at distinct points (in general, two additional evaluations
per adversary and one per straggler). Finally, after decoding polynomial f(u(z)), the master can
obtain f(X1) and f(X2) by evaluating it at z = 1 and z = 2.

4.2 General Description
For brevity, we present the main idea of the general LCC construction, while a formal version
is provided in the long version [28]. Similar to Subsection 4.1, we select any K + T distinct
elements β1, . . . , βK+T from F, and find a polynomial u : F → V of degree at most K + T − 1
such that u(βi) = Xi for any i ∈ [K], and u(βi) = Zi for i ∈ {K + 1, . . . ,K + T}, where all Zi’s
are chosen uniformly at random from V. We then select N distinct elements {αi}i∈[N ] from F such
that {αi}i∈[N ] ∩ {βj}j∈[K] = ∅, and let X̃i = u(αi) for any i ∈ [N ]. After each worker i applies f
on X̃i, it returns an evaluation of a polynomial of degree deg(f) · (K + T − 1). As we prove in [28],
as long as sufficiently many workers return the computation results (as specified in Theorem 1),
the master can successfully recover the needed results using Reed-Solomon decoding, in spite of S
stragglers and A adversaries. This construction also guarantees T -privacy.

5 Application to Linear Regression and Experiments on AWS EC2
We demonstrate a practical application of LCC in accelerating distributed linear regression, whose
gradient computation is a quadratic function of the input, hence matching well the LCC framework.
We also show its performance gain over state of the arts via experiments on AWS EC2 clusters.

7It is also possible to use the conventional multi-round BGW, which only requires N ≥ 2T + 1 workers to
ensure T -privacy. However, multiple rounds of computation and communication (Ω(log deg(f)) rounds) are
needed, which further increases its communication overhead.

5



Applying LCC for linear regression. Given a feature matrix X ∈ Rm×d containing m data points
of d features, and a label vector y ∈ Rm, a linear regression problem aims to find the weight vector
w ∈ Rd that minimizes the loss ||Xw−y||2. Gradient descent (GD) solves this by iteratively moving
the weight along the negative gradient, which is in iteration-t computed as 2X>(Xw(t) − y).

To run GD distributedly over a system with a master and n workers, each worker stores r
n fraction of

coded columns for some parameter 1 ≤ r ≤ n. Given the current weight w, each worker performs
computation using its local storage. We cast this computation to the model in Section 2, by grouping
the columns intoK=dnr e blocks such that X = [X̄1 · · · X̄K ]>, and let the system compute XX>w,
which is the sum of a degree-2 polynomial f(X̄k) = X̄kX̄

>
k w evaluated over X̄1, . . . , X̄K .8 Using

LCC, we can achieve a recovery threshold of RLCC = 2(K − 1) + 1 = 2dnr e − 1 (Theorem 1). 9

Comparison with state of the arts. The conventional uncoded scheme picks r = 1, and has
each worker j compute X̄jX̄

>
j w, yielding recovery threshold Runcoded = n. By redundantly

storing/processing r > 1 uncoded sub-matrices at each worker, the “gradient coding” (GC)
methods [10, 14, 15] code across partial gradients computed from uncoded data, and reduce the
recovery threshold to RGC = n − r + 1. An alternative “matrix-vector multiplication based”
(MVM) approach [17] requires two rounds of computation. MVM achieves a recovery threshold of
RMVM = d 2nr e in each round, when the storage is evenly split between rounds.

scenario 1 scenario 2 scenario 3
0

20

40

60

to
ta

lr
un

-t
im

e,
se

c

uncoded GC MVM LCC

Figure 2: Run-time comparison of LCC with
other three schemes: uncoded, GC, and MVM.

Compared with GC, LCC codes directly on data, and re-
duces the recovery threshold by about r/2 times. While
the amount of computation and communication per node
is the same for both, LCC is expected to finish much
faster due to its much smaller recovery threshold. Com-
pared with MVM, LCC achieves a smaller recovery
threshold than that in each round of MVM (assuming
even storage split). While each MVM worker performs
less computation in each iteration, it sends two vectors
with sizes proportional to m and d respectively, whereas
each LCC worker only sends one dimension-d vector.

We run linear regression on EC2 using Nesterov’s accelerated gradient descent, implemented on
t2.micro nodes. We generate synthetic datasets of m data points, by randomly sampling 1) true
weight w∗, and 2) each input xi of d features and computing output yi = x>i w

∗. For each dataset,
we run GD for 100 iterations over 40 workers. We use different dimensions of input X: 8000× 7000
for scenarios 1&2, and 160000× 500 for scenario 3. In scenario 1, we let the system run with natural
stragglers. To mimic slow/failed workers, we artificially introduce stragglers in scenarios 2 and 3,
by imposing a 0.5 seconds delay on each worker with probability 5% in each iteration. To avoid
numerical instability due to large entries, we can embed input data into a large finite field, and apply
LCC with exact computations. However in all our experiments the gradients are calculated correctly
without carrying out this step.

Results. For GC and LCC, we optimize the total run-time over r subject to local memory size. For
MVM, we further optimize run-time over the storage assigned between two rounds of multiplications.
See Fig. 2 for run-time measurement, and the long version [28] for detailed breakdown by scenario.

We draw the following conclusions from the experiments.

• LCC achieves the least run-time in all scenarios. In particular, LCC speeds up the uncoded scheme
by 6.79×-13.43×, the GC scheme by 2.36-4.29×, and the MVM scheme by 1.01-12.65×.

• In scenarios 1 & 2 where m is close to the number of features d, LCC achieves a similar perfor-
mance as MVM. However, with much more data points in scenario 3, LCC finishes substantially
faster than MVM by as much as 12.65×. The main reason is that MVM requires large amounts
of data transfer from workers to the master in the first round and from master to workers in the
second round (both proportional to m). However, the amount of communication from each worker
or master is proportional to d for all other schemes, much smaller than m in scenario 3.

8Since the value of X>y does not vary across iterations, it only needs to be computed once. We assume that
it is available at the master for weight updates.

9The recovery threshold (denoted by R) is defined as the minimum number of workers the master needs to
wait for, to guarantee decodability (i.e., tolerating the remaining stragglers).

6



Acknowledgement This material is based upon work supported by Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR001117C0053, ARO award W911NF1810400,
and NSF grants CCF-1703575 and CCF-1763673. The views, opinions, and/or findings expressed
are those of the author(s) and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government. Qian Yu is supported by the Google PhD
Fellowship.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., “Tensorflow: A system for large-scale machine learning.,” in OSDI, vol. 16,
pp. 265–283, 2016.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2,
pp. 74–80, 2013.

[3] M. Li, D. G. Andersen, A. Smola, and K. Yu, “Communication efficient distributed machine
learning with the parameter server,” in Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’14, (Cambridge, MA, USA),
pp. 19–27, MIT Press, 2014.

[4] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-task learning for straggler
avoiding predictive job scheduling,” Journal of Machine Learning Research, vol. 17, no. 106,
pp. 1–37, 2016.

[5] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient distributed machine
learning with the parameter server,” in Advances in Neural Information Processing Systems,
pp. 19–27, 2014.

[6] P. Blanchard, R. Guerraoui, J. Stainer, et al., “Machine learning with adversaries: Byzantine
tolerant gradient descent,” in Advances in Neural Information Processing Systems, pp. 118–128,
2017.

[7] R. Cramer, I. B. Damgrd, and J. B. Nielsen, Secure Multiparty Computation and Secret Sharing.
New York, NY, USA: Cambridge University Press, 1st ed., 2015.

[8] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-preserving
computations,” in Proceedings of the 13th European Symposium on Research in Computer
Security: Computer Security, ESORICS ’08, (Berlin, Heidelberg), pp. 192–206, Springer-Verlag,
2008.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up dis-
tributed machine learning using codes,” IEEE Transactions on Information Theory, vol. 64,
pp. 1514–1529, March 2018.

[10] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding
stragglers in distributed learning,” in Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 3368–3376,
2017.

[11] R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent via moment encoding
with ldpc codes,” SysML Conference, 2018.

[12] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in distributed optimization
through data encoding,” in Advances in Neural Information Processing Systems, pp. 5440–5448,
2017.

[13] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-optimal straggler
mitigation for distributed gradient methods,” arXiv preprint arXiv:1710.09990, 2017.

[14] W. Halbawi, N. A. Ruhi, F. Salehi, and B. Hassibi, “Improving distributed gradient descent
using reed-solomon codes,” CoRR, vol. abs/1706.05436, 2017.

[15] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic mds codes and
expander graphs,” arXiv preprint arXiv:1707.03858, 2017.

[16] M. Ye and E. Abbe, “Communication-computation efficient gradient coding,” arXiv preprint
arXiv:1802.03475, 2018.

7



[17] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up dis-
tributed machine learning using codes,” NIPS Workshop on Machine Learning Systems, Dec.
2015.

[18] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” in Proceedings of the
2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pp. 964–971, Sept. 2015.

[19] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly
using coded short dot products,” in Advances In Neural Information Processing Systems,
pp. 2092–2100, 2016.

[20] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-
dimensional coded matrix multiplication,” in Advances in Neural Information Processing
Systems 30, pp. 4406–4416, Curran Associates, Inc., 2017.

[21] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to optimally allocate resources
for coded distributed computing?,” in 2017 IEEE International Conference on Communications
(ICC), pp. 1–7, May 2017.

[22] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff between
computation and communication in distributed computing,” IEEE Transactions on Information
Theory, vol. 64, no. 1, pp. 109–128, 2018.

[23] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. R. Cadambe, and P. Grover, “On the optimal
recovery threshold of coded matrix multiplication,” arXiv preprint arXiv:1801.10292, 2018.

[24] H. A. Nodehi and M. A. Maddah-Ali, “Limited-sharing multi-party computation for massive
matrix operations,” in 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 1231–1235, June 2018.

[25] L. Chen, Z. Charles, D. Papailiopoulos, et al., “Draco: Robust distributed training via redundant
gradients,” arXiv preprint arXiv:1803.09877, 2018.

[26] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic
fault-tolerant distributed computation,” in Proceedings of the twentieth annual ACM symposium
on Theory of computing, pp. 1–10, ACM, 1988.

[27] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine
learning,” in 2017 IEEE Symposium on Security and Privacy (SP), vol. 00, pp. 19–38, May
2017.

[28] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and A. S. Avestimehr, “La-
grange coded computing: Optimal design for resiliency, security and privacy,” arXiv preprint
arXiv:1806.00939, 2018.

[29] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure coded computing using
secret sharing via staircase codes,” arXiv preprint arXiv:1802.02640, 2018.

[30] S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded linear transform,” arXiv
preprint arXiv:1804.09791, 2018.

[31] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix
multiplication: Fundamental limits and optimal coding,” arXiv preprint arXiv:1801.07487,
2018.

[32] P. Renteln, Manifolds, Tensors, and Forms: An Introduction for Mathematicians and Physicists.
Cambridge University Press, 2013.

[33] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

[34] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, pp. 612–613, Nov. 1979.

8


